Ферменты строение и функции

Ферменты строение и функции

В клетке любого живого организма протекают миллионы химических реакций. Каждая из них имеет большое значение, поэтому важно поддерживать скорость биологических процессов на высоком уровне. Почти каждая реакция катализируется своим ферментом.

Дорогие читатели! Наши статьи рассказывают о типовых способах решения проблем со здоровьем, но каждый случай носит уникальный характер.

Если вы хотите узнать, как решить именно Вашу проблему — начните с программы похудания. Это быстро, недорого и очень эффективно!

Узнать детали

Ферменты имеют белковую природу

Различные химические процессы — основа жизнедеятельности любого организма. Главная роль в них отведена ферментам. Ферменты или энзимы являются природными биокатализаторами.

В организме человека они принимают активное участие в процессе переваривания пищи, функционировании центральной нервной системы и стимуляции роста новых клеток. По своей природе ферменты относятся к белкам, предназначенным для ускорения различных биохимических реакций в организме. Расщепление белков, жиров, углеводов и минералов — процессы, в которых энзимы выступают одними из основных действующих компонентов. Существует довольно много разновидностей ферментов, каждая из которых предназначена для воздействия на то или иное вещество.

Белковые молекулы уникальны и не способны заменять друг друга. Для их активности необходим определенный температурный диапазон. Для ферментов человека идеальной является нормальная температура тела.

Кислород и солнечный свет разрушает ферменты. Являясь органическими веществами белкового происхождения, ферменты действуют по принципу неорганических катализаторов, ускоряя реакции в клетках, в которых они синтезируются. Синоним к названию таких белковых молекул — энзимы. Почти все реакции в клетках происходят с участием специфических ферментов. В их составе выделяют две части. Первая представляет собой непосредственно белковую часть, представленную белком третичной структуры и именуемую апоферментом, вторая — активный центр энзима, получивший название кофермент.

Обе части образуют единую белковую молекулу, названную холоферментом. Каждый фермент предназначен для воздействия на конкретное вещество, именуемое субстратом. Результат произошедшей реакции называется продуктом. К примеру, энзим, предназначенный для расщепления янтарной кислоты сукцината , носит название сукцинатдегидрогеназа. Кроме того, название белковой молекулы определяется и типом реакции, выполнение которой она обеспечивает. Так, дегидрогеназы отвечают за процесс регенерации и окисления, а гидролазы — за расщепление химической связи.

Действие ферментов различных видов направлено на определенные субстраты. То есть участие белковых молекул в тех или иных биохимических реакциях индивидуально. Каждый фермент связан со своим субстратом и может работать только с ним. За неразрывность этой связи отвечает апофермент. Ферменты могут пребывать в свободном состоянии в цитоплазме клетки или же взаимодействовать с более сложными структурами. Также существуют определенные их виды, действующие вне клетки. К ним относятся, например, ферменты, расщепляющие белки и крахмал.

Кроме того, энзимы могут вырабатываться различными микроорганизмами. Для изучения ферментов и процессов, происходящих с их участием, предназначена отдельная область биохимической науки — энзимология. Впервые информация об особых белковых молекулах, действующих по принципу катализаторов, появилась в результате изучения пищеварительных процессов и реакций брожения, происходящих в организме человека.

Существенный вклад в развитие современной энзимологии приписывается Л. Пастеру, который считал, что все биохимические реакции в организме происходят при участии исключительно живых клеток. Бухнером в начале ХХ ст. В то время исследователю удалось определить, что катализатором в процессе сбраживания сахарозы с последующим выделением этилового спирта и диоксида углерода выступает бесклеточный дрожжевой экстракт. Данное открытие стало решительным толчком для подробного изучения так называемых катализаторов различных биохимических процессов в организме.

Уже в году был выделен первый фермент — уреаза. Автором открытия стал Дж. Самнер, сотрудник Корнеллского университета. После этого в течение одного десятилетия учеными был выделен ряд других энзимов, а белковая природа всех органических катализаторов — доказана окончательно. На сегодняшний день миру известно свыше различных ферментов. Но при этом современная энзимология продолжает активное изучение, выделение и изучение свойств отдельных видов белковых молекул. Так же как и белки , ферменты принято делить на простые и сложные.

Первые представляют собой соединения, состоящие из аминокислот, например, трипсина, пепсина или лизоцима. Сложные энзимы, как упоминалось выше, состоят из белковой части с аминокислотами апофермента и небелковой составляющей, получившей названием кофактора. Только сложные ферменты могут участвовать в биореакциях. Кроме того, подобно белкам ферменты бывают моно- и полимерами, то есть состоят из одной или нескольких субъединиц. Основная роль ферментов в организме человека — преобразование одних веществ в другие, то есть субстратов в продукты.

Они выступают катализаторами свыше чем в 4 тысячах биохимических жизненно важных реакций. Функции ферментов заключаются в направлении и регуляции метаболических процессов. Как неорганические катализаторы, энзимы могут в разы ускорять прямую и обратную биореакцию. Стоит отметить, что при их действии химическое равновесие не нарушается. Происходящие реакции обеспечивают распад и окисление питательных веществ, попадающих в клетки.

Каждая белковая молекула может выполнять огромное множество действий в минуту. При этом белок ферментов, вступая в реакцию с различными веществами, остается неизменным. Энергия, вырабатываемая в процессе окисления питательных веществ, используется клеткой так же, как и продукты расщепления веществ, необходимые для синтеза органических соединений.

Сегодня широкое применение нашли не только ферменты-препараты медицинского назначения. Энзимы также используются в пищевой и текстильной промышленности, в современной фармакологии. На собрании V Международного биохимического союза, прошедшем в Москве в году, была принята современная классификация ферментов. Данная классификация подразумевает их деление на классы, в зависимости от типа реакции, в которой энзим выступает катализатором.

Кроме того, каждый класс ферментов делится на подклассы. Для их обозначения используется код из четырех чисел, разделенных точками:. Всего в современной классификации ферментов выделяют шесть их классов, а именно:. Состав ферментов объединяет в себе отдельные области, отвечающие за выполнение конкретных функций. Так, в составе ферментов, как правило, выделяют активный и аллостерический центры.

Последний, к слову, есть далеко не у всех белковых молекул. Активный центр представляет собой сочетание остатков аминокислот, отвечает за контакт с субстратом и выполнение катализа. Активный центр в свою очередь делится на две части: якорную и каталитическую. Энзимы, состоящие их нескольких мономеров, могут содержать более одного активного центра. Аллостерический центр отвечает за активность ферментов. Свое название такая часть ферментов получила из-за того что его пространственная конфигурация не имеет ничего общего с молекулой субстрата.

Изменение скорости реакции, происходящей с участием фермента, обуславливается связыванием различных молекул именно с аллостерическим центром.

Энзимы, содержащие в своем составе аллостерические центры, являются полимерными белками. Действие ферментов можно разделить на несколько этапов, в частности:. Кроме того, действие ферментов может происходить с участием различных механизмов катализа.

Так, выделяют кислотно-основной и ковалентный катализ. В первом случае в реакции участвуют энзимы, содержащие в своем активном центре специфические остатки аминокислот. Такие группы ферментов являются отличными катализаторами многочисленных реакций в организме. Ковалентный катализ подразумевает действие ферментов, которые при контакте с субстратами формируют нестабильные комплексы.

Результатом таких реакций является образование продуктов посредством внутримолекулярных перестроек. Активность ферментов является непостоянной и во многом зависит от различных факторов среды, в которой им приходится действовать.

Так основным показателями для активности ферментов являются факторы внутреннего и внешнего воздействия на клетку. Активность ферментов изменяют в каталах, показывающих количество энзима, превращающего за секунду 1 моль субстрата, с которым он взаимодействует. Международная единица измерения — Е, демонстрирующая количество энзима, способного за 1 минуту преобразовать 1 мкмоль субстрата.

Одним из основных направлений в современной медицине и энзимологии в частности является разработка методов управления скоростью метаболических реакций, происходящих с участием энзимов. Ингибированием принято называть уменьшение активности ферментов посредством использования различных соединений.

Соответственно, вещество, обеспечивающее специфичное снижение активности белковых молекул, получило название ингибитора. Существует различные виды ингибирования. Так, в зависимости от прочности связывания энзима с ингибитором процесс их взаимодействия может быть обратимым и, соответственно, необратимым. А в зависимости от того, как воздействует ингибитор на активный центр энзима, процесс ингибирования может быть конкурентным и неконкурентным.

В отличие от ингибирования, активация ферментов подразумевает увеличение их действия в происходящих реакциях. Вещества, позволяющие получить необходимый результат, называются активаторами. Такие вещества могут иметь органическую и неорганическую природу. Например, органическими активаторами могут выступать желчные кислоты, глутатион, энтерокиназа, витамин С, разные тканевые ферменты и др. В качестве неорганических активаторов могут использоваться пепсиноген и ионы различных металлов, чаще всего двухвалентных.

Различные ферменты, реакции, происходящие с их участием, а также их результат нашли свое широкое применения в многообразных сферах. На протяжении многих лет действие ферментов активно используется в пищевой, кожевенной, текстильной, фармацевтической и многих других промышленных отраслях.

Например, с помощью природных энзимов исследователи пытаются повысить эффективность спиртового брожения при изготовлении алкогольных напитков, улучшить качество продуктов питания, разработать новые методы похудения и др.

Ферменты специфичны к субстратам: АТФ-аза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу.

Ферменты – биологические катализаторы. Значение ферментов

В природе существуют особые вещества белковой природы, одинаково успешно функционирующие как в живой клетке, так и за её пределами.

Это ферменты. С их помощью организм переваривает пищу, выращивает и разрушает клетки, благодаря им эффективно работают все системы нашего организма и, в первую очередь, центральная нервная система. Без ферментов в мире не существовало бы йогурта, кефира, сыра, брынзы, кваса, готовых каш, детского питания.

Из чего состоят и как устроены эти биокатализаторы, недавно ставшие верными помощниками биотехнологов, как их отличают друг от друга, как они облегчают нашу жизнь, об этом вы узнаете из этого урока. Ферменты — это белковые молекулы, которые синтезируются живыми клетками. В каждой клетке насчитывается более сотни различных ферментов. Роль ферментов в клетке колоссальна. С их помощью химические реакции идут с высокой скоростью, при температуре, подходящей для данного организма.

То есть ферменты — это биологические катализаторы , которые облегчают протекание химической реакции и за счет этого увеличивают её скорость. Как катализаторы они не изменяют направление реакции и не расходуются в процессе реакции. Ферменты — биокатализаторы — вещества, увеличивающие скорость химических реакций.

Без ферментов все реакции в живых организмах протекали бы очень медленно и не могли бы поддерживать его жизнеспособность. Наглядный пример работы ферментов — сладковатый вкус во рту, который появляется при пережевывании продуктов, содержащих крахмал например, риса или картофеля.

Появление сладкого вкуса связано с работой фермента амилазы, которая присутствует в слюне и расщепляет крахмал рис. Крахмал является полисахаридом, и сам по себе безвкусный, но продукты расщепления крахмала моносахариды с меньшей молекулярной массой декстрины, мальтоза, глюкоза сладкие на вкус. Все ферменты — глобулярные белки с третичной или четвертичной структурой.

Ферменты могут быть простыми, состоящими только из белка, и сложными. Сложные ферменты состоят из белковой и небелковой части белковая часть — апофермент , а добавочная небелковая — кофермент. В качестве кофермента могут выступать витамины — E, K, B групп рис. Фермент взаимодействует с субстратом, не всей молекулой, а отдельной её частью — т. Фермент взаимодействует с субстратом и образует короткоживущий фермент-субстратный комплекс. По завершении реакции, фермент-субстратный комплекс распадается на продукты и фермент.

Фермент в итоге не изменяется: по окончании реакции он остается таким же, каким был до неё, и может теперь взаимодействовать с новой молекулой субстрата рис. На рисунке 3 представлен механизм работы фермента, в частности, образования пептидной связи между молекулами аминокислот.

Две аминокислоты взаимодействуют между собой в активном центре фермента, между ними образуется пептидная связь. Новое вещество дипептид покидает активный центр фермента, поскольку оно по своей структуре не соответствует этому центру. Особенностью ферментов является то, что они обладают высокой специфичностью, т.

В году Э. Фишер предположил, что эта специфичность обусловлена особой формой молекулы фермента, которая точно соответствует форме молекулы субстрата.

Гипотеза гласит: субстрат подходит к ферменту, как ключ подходит к замку. Избирательность действия фермента связана со строением его активного центра рис. Гипотеза взаимодействия фермента и субстрата по принципу ключ-замок Э. В первую очередь, на активность фермента влияет температура. С повышением температуры скорость химической реакции возрастает. Увеличивается скорость молекул, у них появляется больше шансов столкнуться друг с другом. Следовательно, увеличивается вероятность того, что реакция между ними произойдет.

Температура, обеспечивающая наибольшую активность фермента — оптимальная. За пределами оптимальной температуры скорость реакции снижается вследствие денатурации белков. Когда температура снижается, скорость химической реакции тоже падает. В тот момент, когда температура достигает точки замерзания, фермент инактивируется, но при этом не денатурирует см. В наше время для длительного хранения продуктов широко используют способ быстрого замораживания.

Оно останавливает рост и развитие микроорганизмов, а также инактивирует ферменты, находящиеся внутри микроорганизмов, и предотвращает разложение продуктов питания. Кроме этого, активность ферментов зависит ещё от pH среды кислотности — то есть показателя концентрации ионов водорода.

В большинстве случаев, ферменты работают при нейтральном pH, т. Но существуют ферменты, которые работают либо в кислой и сильнокислой, либо в щелочной и сильнощелочной среде. Например, один из таких ферментов — пепсин, он находится у нас с вами в желудке, работает в сильнокислой среде и расщепляет белки.

Поскольку в желудке среда достаточно кислая, 1,5 — 2 pH, то этот фермент работает при сильнокислой среде. Ферменты подвержены действию активаторов и ингибиторов. Некоторые ионы, например, ионы металлов Mg, Mn, Zn активируют ферменты. Другие же ионы к ним относятся ионы тяжелых металлов, а именно Hg, Pb, Cd , наоборот, подавляют активность ферментов, денатурируют их белки. В году была предложена систематическая классификация ферментов на 6 групп. Но названия ферментов оказались очень длинными и трудными в произношении, поэтому ферменты принято сейчас именовать с помощью рабочих названий.

Например, если вещество — лактоза , то есть молочный сахар, то лактаза — это фермент который его преобразует. Если сахароза обыкновенный сахар , то фермент, который его расщепляет, — сахараза. Соответственно, ферменты, которые расщепляют протеины , носят название протеиназы. Ферменты применяются практически во всех областях человеческой деятельности, и такое широкое применение, в первую очередь, связано с тем, что они сохраняют свои уникальные свойства вне живых клеток.

Ферменты групп амилаз, протеаз и липаз применяются в медицине. Они расщепляют крахмал, белки и жиры. Все эти ферменты, как правило, входят в состав комбинированных препаратов, таких как фестал и панзинорм, и используются, в первую очередь, для лечения заболеваний желудочно-кишечного тракта рис.

Такие ферменты как амилаза расщепляют крахмал и поэтому широко используются в пищевой промышленности. В пищевой промышленности используется протеиназа, расщепляющая белки, и липазы, расщепляющие жиры. Ферменты амилазы используются в хлебопечении, виноделии и пивоварении см. Ферменты широко используются в косметической промышленности, входят в состав кремов, некоторые ферменты входят в состав стиральных порошков.

Энзимопатология — область энзимологии, которая изучает связь между болезнью и недостаточным синтезом, или отсутствием синтеза какого-либо фермента. Например, причиной наследственного заболевания — фенилкетонурии , которое сопровождается расстройством психической деятельности, является потеря клетками печени способности синтезировать фермент, катализирующий превращение фенилаланина в тирозин. В результате в организме накапливаются токсические вещества. Новорожденный ребенок выглядит здоровым, а первые симптомы фенилкетонурии проявляются в возрасте от двух до шести месяцев.

Это выраженная вялость, отсутствие интереса к окружающему миру, повышенная раздражительность, а также беспокойство и рвота. Во втором полугодии жизни у ребенка выражено отставание в психическом развитии. При своевременной диагностике патологических изменений можно избежать, если с момента рождения до наступления полового созревания ограничить поступление фенилаланина с пищей.

На этом уроке мы с вами выяснили, что ферменты используются в различных областях человеческой деятельности. Они широко используются в пищевой промышленности, в медицине, в косметике и бытовой химии. Например, в стиральные порошки добавляют амилазу , которая расщепляет крахмал, протеазы , расщепляющие белки или белковые загрязнения, и липазы , очищающие ткани от жира и масла.

Как правило, в состав стирального порошка входит комбинация этих ферментов, то есть ферментные препараты усиливают действие друг друга. Сегодня наиболее изученными ферментами являются протеазы и амилазы. Липазы не всегда стабильны по качеству. Их разработкой занимаются только 10 лет, а амилаза и протеаза существуют на рынке уже более полувека.

Сегодня эти две категории ферментов очень хорошо изучены и дают прекрасные результаты, чего пока что нельзя сказать о липазах. Липазы полностью справляются с загрязнениями только после двух-трех стирок, а протеазы и амилазы — за одну.

Ферменты были открыты при изучении процессов брожения. Представления о том, что химические процессы внутри живых организмов протекают под действием каких-то особенных веществ, возникло более лет назад. Пастер ошибочно считал, что ферменты неотделимы от живых клеток. Другой ученый, Эдуард Бухнер, доказал, что в водных экстрактах живых клеток находится набор ферментов, катализирующих превращение сахара в спирт. Именно его открытие дало начало новой науке — энзимологии.

Успехи энзимологии во второй половине XX века привели к тому, что в настоящее время выделено и очищено более ферментов, которые используются в различных отраслях человеческой деятельности. Интернет-портал Biochemistry. Биология Источник. Интернет-портал Chem. Общая биология. Ижевский, О. Корнилова, Т. Лощилина и др. Беляев Д. Биология класс. Базовый уровень. Биология 11 класс.

Захаров, С. Мамонтов, Н.

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Ферменты и их роль в организме человека — Биология 8 класс #34 — Инфоурок

https://www.youtube.com/embed/fGWSG8Wsku0

1. Общая характеристика ферментов.

Ферменты специфичны к субстратам: АТФ-аза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу. Ферментативная активность может регулироваться активаторами повышаться и ингибиторами понижаться. Наука о ферментах называется энзимологией , а не ферментологией чтобы не смешивать корни слов латинского и греческого языков.

Однако механизм этих явлений был неизвестен . Эта точка зрения господствовала в науке в течение длительного времени и шла вразрез с господствовавшей тогда теорией брожения Ю. Либиха , согласно которой все процессы брожения представлялись чисто химическими явлениями каталитического характера будто бы спиртовое брожение происходит вследствие того, что молекулярные колебания разлагающихся частиц дрожжей передаются сахару и сахар начинает распадаться на спирт и углекислый газ; таким образом дрожжи вызывают брожение не при жизни, а только после своей смерти .

Различные точки зрения о природе спиртового брожения в теоретическом споре Л. Пастера с одной стороны, и механицистов М. Бертло и Ю. Собственно ферментами от лат.

В противовес этому подходу в году В. Кюне предложил термин энзим от греч. Через два года после смерти Л. Пастера в году Э. В году за эту работу он был удостоен Нобелевской премии. Впервые высокоочищенный кристаллический фермент уреаза был выделен в году Дж.

В течение последующих 10 лет было выделено ещё несколько ферментов, и белковая природа ферментов была окончательно доказана. Рибозимом оказался участок молекулы пре-рРНК Tetrahymena, кодируемый интроном внехромосомного гена рДНК; этот участок осуществлял аутосплайсинг, то есть сам вырезал себя при созревании рРНК.

Существуют два основных пути повышения скорости химической реакции. Катализатор обозначим его буквой К на промежуточной стадии взаимодействует с реагентом А с образованием нового комплексного соединения КА , переходному состоянию которого соответствует значительно более низкая энергия активации по сравнению с переходным состоянием реагента А в некатализируемой реакции.

Затем комплекс реагент-катализатор КА распадается на продукт П и свободный катализатор, который может опять соединиться с другой молекулой А и повторить весь цикл. Именно таким образом катализаторы снижают энергию активации химической реакции, в их присутствии гораздо более значительная доля молекул данной популяции вступает в реакцию в единицу времени. Ферменты, так же как и другие катализаторы, соединяются со своими субстратами в ходе каталитического цикла .

Ферменты присутствуют во всех живых клетках и способствуют превращению одних веществ в другие. Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах.

К году было описано более разных ферментов . Они играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма. Подобно всем катализаторам, ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активации процесса. Химическое равновесие при этом не смещается ни в прямую, ни в обратную сторону. Таким образом, у различных ферментов, выполняющих одну функцию, будет одинаковое название или один и тот же фермент имеет два и более названий.

Такие ферменты различают по другим свойствам, например, по оптимальному pH щелочная фосфатаза или локализации в клетке мембранная АТФаза. Многие ферменты имеют исторически сложившиеся тривиальные названия, не связанные с названиями их субстратов, например пепсин и трипсин. Из-за этих и других затруднений, а также вследствие всевозрастающего числа вновь открываемых ферментов было принято международное соглашение о создании систематической номенклатуры и классификации ферментов .

Классификация была предложена Международным союзом биохимии и молекулярной биологии International Union of Biochemistry and Molecular Biology. Каждый класс содержит подклассы, так что фермент описывается совокупностью четырёх чисел, разделённых точками. Например, пепсин имеет название ЕС 3. Первое число грубо описывает механизм реакции, катализируемой ферментом:. Простейшим описанием кинетики односубстратных ферментативных реакций является уравнение Михаэлиса — Ментен см.

Волькенштейн , Р. Догонадзе, З. Урушадзе и др. Предположим, концентрация фермента постоянна и необходимо измерить влияние изменения концентрации субстрата на начальную скорость ферментативной реакции. При очень низких концентрациях субстрата скорость реакции очень мала, но стабильно возрастает по мере постепенного повышения концентрации субстрата.

Однако приращения скорости каталитической реакции становятся с каждым возрастанием концентрации субстрата всё меньше и меньше. Наконец, наступает момент, когда любое увеличение концентрации субстрата вызывает лишь бесконечно малое ускорение реакции: как бы ни увеличивалась концентрация субстрата, скорость реакции может лишь приближаться к плато, но никогда его не достигнет.

На этом плато, называемом максимальной скоростью реакции V max фермент насыщен субстратом и не может функционировать быстрее. Данный эффект насыщения свойственен почти всем ферментам. Величину V max можно определить из представленного графика путём аппроксимирования.

Точное определение в данном случае невозможно, так как по мере повышения концентрации субстрата начальная скорость реакции лишь приближается к V max , но никогда её не достигает. Активность ферментов определяется их трёх- и четырёхмерной структурой . Как и все белки, ферменты синтезируются в виде линейной цепочки аминокислот , которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула белковая глобула обладает уникальными свойствами.

Несколько белковых цепей могут объединяться в белковый комплекс. Третичная и четвертичная структуры белков разрушается при нагревании, изменении pH или воздействии некоторых химических веществ. На сегодняшний момент описано несколько механизмов действия ферментов.

В простой ферментативной реакции может участвовать только одна молекула субстрата С, связывающаяся с ферментом Ф с образованием продукта П:. Однако на самом деле во многих ферментативных реакциях метаболизма принимают участие и связываются с ферментом две, а иногда даже три молекулы разных субстратов.

Такие реакции обычно включают перенос атома или функциональной группы от одного субстрата к другому. Такие реакции могут протекать по двум различным механизмам. В реакциях первого типа, называемых реакциями единичного замещения , два субстрата С 1 и С 2 связываются с ферментом Ф либо специфическим, либо случайным образом с образованием комплекса Ф С 1 С 2 , который затем распадается на продукты П 1 и П 2 :.

В этих реакциях с каталитическим центром фермента в данный момент времени связан только один из двух субстратов. Присоединение первого субстрата сопровождается переносом его функциональной группы на молекулу фермента.

Только после удаления продукта, образовавшегося из первого субстрата, второй субстрат может связаться с ферментом и принять функциональную группу . Изучение механизма химической реакции , катализируемой ферментом наряду с определением промежуточных и конечных продуктов на разных стадиях реакции подразумевает точное знание геометрии третичной структуры фермента, природы функциональных групп его молекулы , обеспечивающих специфичность действия и высокую каталитическую активность на данный субстрат , а также химической природы участка участков молекулы фермента, который обеспечивает высокую скорость каталитической реакции.

Обычно молекулы субстрата, участвующие в ферментативных реакциях, по сравнению с молекулами ферментов имеют относительно небольшие размеры. В активном центре условно выделяют :.

Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты.

Эта область называется сайтом связывания субстрата. Обычно он совпадает с активным центром фермента или находится вблизи него. Некоторые ферменты содержат также сайты связывания кофакторов или ионов металлов.

В конце реакции её продукт или продукты отделяются от фермента. В результате фермент снижает энергию активации реакции. Это происходит потому, что в присутствии фермента реакция идёт по другому пути фактически происходит другая реакция , например:. Ферменты не могут самостоятельно обеспечивать энергией эндергонические реакции для протекания которых требуется энергия. Поэтому ферменты, осуществляющие такие реакции, сопрягают их с экзергоническими реакциями, идущими с выделением большего количества энергии.

Например, реакции синтеза биополимеров часто сопрягаются с реакцией гидролиза АТФ. Для активных центров некоторых ферментов характерно явление кооперативности. Ферменты обычно проявляют высокую специфичность по отношению к своим субстратам субстратная специфичность. Это достигается частичной комплементарностью формы, распределения зарядов и гидрофобных областей на молекуле субстрата и в центре связывания субстрата на ферменте. Ферменты обычно демонстрируют также высокий уровень стереоспецифичности образуют в качестве продукта только один из возможных стереоизомеров или используют в качестве субстрата только один стереоизомер , региоселективности образуют или разрывают химическую связь только в одном из возможных положений субстрата и хемоселективности катализируют только одну химическую реакцию из нескольких возможных для данных условий.

Несмотря на общий высокий уровень специфичности, степень субстратной и реакционной специфичности ферментов может быть различной. Например, эндопептидаза трипсин разрывает пептидную связь только после аргинина или лизина , если за ними не следует пролин, а пепсин гораздо менее специфичен и может разрывать пептидную связь, следующую за многими аминокислотами. Эмиль Фишер предположил, что специфичность ферментов определяется точным соответствием формы фермента и субстрата .

Фермент соединяется с субстратом с образованием короткоживущего фермент-субстратного комплекса. Однако, хотя эта модель объясняет высокую специфичность ферментов, она не объясняет явления стабилизации переходного состояния, которое наблюдается на практике. Активный центр фермента может изменить конформацию после связывания субстрата. Боковые группы аминокислот активного центра принимают такое положение, которое позволяет ферменту выполнить свою каталитическую функцию.

В некоторых случаях молекула субстрата также меняет конформацию после связывания в активном центре. Многие ферменты после синтеза белковой цепи претерпевают модификации, без которых фермент не проявляет свою активность в полной мере. Такие модификации называются посттрансляционными модификациями процессингом. Например, присоединение остатка фосфорной кислоты называется фосфорилированием, оно катализируется ферментом киназой.

Многие ферменты эукариот гликозилированы, то есть модифицированы олигомерами углеводной природы. Например, химотрипсин протеаза , участвующая в пищеварении , получается при выщеплении полипептидного участка из химотрипсиногена.

Химотрипсиноген является неактивным предшественником химотрипсина и синтезируется в поджелудочной железе. Неактивная форма транспортируется в желудок , где превращается в химотрипсин. Такой механизм необходим для того, чтобы избежать расщепления поджелудочной железы и других тканей до поступления фермента в желудок.

Некоторые ферменты выполняют каталитическую функцию сами по себе, безо всяких дополнительных компонентов. Однако есть ферменты, которым для осуществления катализа необходимы компоненты небелковой природы.

В нормальных физиологических условиях биохимические реакции в организме протекают с высокими скоростями, что обеспечивается биологическими катализаторами белковой природы — ферментами.

Биохимия ферментов. Строение, свойства и функции

В клетке любого живого организма протекают миллионы химических реакций. Каждая из них имеет большое значение, поэтому важно поддерживать скорость биологических процессов на высоком уровне. Почти каждая реакция катализируется своим ферментом. Что такое ферменты? Какова их роль в клетке? Термин «фермент» происходит от латинского fermentum — закваска. Также они могут называться энзимами от греческого en zyme — «в дрожжах». Ферменты — биологически активные вещества, поэтому любая реакция, протекающая в клетке, не обходится без их участия.

Эти вещества выполняют роль катализаторов. Соответственно, любой фермент обладает двумя основными свойствами:. Ферменты ускоряют биохимические реакции в тысячу, а в некоторых случаях в миллион раз. Это значит, что при отсутствии ферментативного аппарата все внутриклеточные процессы практически остановятся, а сама клетка погибнет. Поэтому роль ферментов как биологически активных веществ велика.

Разнообразие энзимов позволяет разносторонне регулировать метаболизм клетки. В любом каскаде реакций принимает участие множество ферментов различных классов. Биологические катализаторы обладают большой избирательностью благодаря определенной конформации молекулы. Объясняется это опять же специфичностью молекулы.

Главная задача фермента — ускорение соответствующей реакции. Любой каскад процессов, начиная с разложения пероксида водорода и заканчивая гликолизом, требует присутствия биологического катализатора.

Правильная работа ферментов достигается высокой специфичностью к определенному субстрату. Это значит, что катализатор может ускорять только определенную реакцию и никакую больше, даже очень похожую.

По степени специфичности выделяют следующие группы энзимов:. Например, коллагеназа расщепляет коллаген, а мальтаза расщепляет мальтозу.

Сюда входят такие вещества, которые могут катализировать определенный класс реакций, к примеру, гидролитическое расщепление.

Работа биокатализатора начинается с момента присоединения его активного центра к субстрату. При этом говорят о комплементарном взаимодействии наподобие замка и ключа. Здесь имеется в виду полное совпадение формы активного центра с субстратом, что дает возможность ускорять реакцию. Следующий этап заключается в протекании самой реакции.

Ее скорость возрастает благодаря действию ферментативного комплекса. В конечном итоге мы получаем энзим, который связан с продуктами реакции. Заключительный этап — отсоединение продуктов реакции от фермента, после чего активный центр вновь становится свободным для очередной работы. В организме человека можно найти огромное количество ферментов. Все знания об их функциях и работе были систематизированы, и в итоге появилась единая классификация, благодаря которой можно легко определить, для чего предназначен тот или иной катализатор.

Здесь представлены 6 основных классов энзимов, а также примеры некоторых подгрупп. Ферменты этого класса катализируют окислительно-восстановительные реакции.

Всего выделяют 17 подгрупп. Оксидоредуктазы обычно имеют небелковую часть, представленную витамином или гемом. Биохимия ферментов-дегидрогеназ заключается в отщеплении атомов водорода и переносе их на другой субстрат.

Эта подгруппа чаще всего встречается в реакциях дыхания, фотосинтеза. Нередко встречаются ионы металлов. Примерами могут служить такие энзимы, как цитохромредуктазы, пируватдегидрогеназа, изоцитратдегидрогеназа, а также многие ферменты печени лактатдегидрогеназа, глутаматдегидрогеназа и т. Ряд ферментов катализирует присоединение кислорода к водороду, в результате чего продуктами реакции могут быть вода или пероксид водорода H 2 0, H 2 0 2.

Примеры ферментов: цитохромоксидаза, тирозиназа. Эти биокатализаторы ускоряют присоединение кислорода к субстрату. Дофамингидроксилаза — один из примеров таких энзимов. Задача ферментов этой группы состоит в переносе радикалов от вещества-донора к веществу-реципиенту.

Метилирование нуклеотидов играет большую роль в регуляции работы нуклеиновой кислоты. Энзимы этой подгруппы транспортируют ацильную группу с одной молекулы на другую. Примеры ацилтрансфераз: лецитинхолестеринацилтрансфераза переносит функциональную группу с жирной кислоты на холестерин , лизофосфатидилхолинацилтрансфераза ацильная группа переносится на лизофосфатидилхолин. Примеры ферментов: аланинаминотрансфераза, которая катализирует синтез аланина из пирувата и глутамата путем переноса аминогруппы.

Ферменты этой подгруппы катализируют присоединение фосфатной группы. Другое название фосфотрансфераз, киназы, встречается намного чаще. Примерами могут служить такие энзимы, как гексокиназы и аспартаткиназы, которые присоединяют фосфорные остатки к гексозам чаще всего к глюкозе и к аспарагиновой кислоте соответственно. Гидролазы — класс энзимов, которые катализируют расщепление связей в молекуле с последующим присоединением воды.

Вещества, которые относятся к этой группе, — основные ферменты пищеварения. Биохимия ферментов этого ряда заключается в разрушении гликозидных связей полимеров полисахаридов и олигосахаридов. Примеры: амилаза, сахараза, мальтаза.

К пептидазам относятся такие ферменты, как пепсины, трипсин, химотрипсин, карбоиксипептидаза. Примеры: аргиназа, уреаза, глутаминаза и т. Многие ферменты-амидазы встречаются в орнитиновом цикле. Лиазы — ферменты, по функции схожие с гидролазами, однако при расщеплении связей в молекулах не затрачивается вода. Энзимы этого класса всегда имеют в составе небелковую часть, например, в виде витаминов В1 или В6.

Эти ферменты действуют на С-С связь. Примерами могут служить глутаматдекарбоксилаза или пируватдекарбоксилаза. Такие ферменты, как правило, отщепляют фосфатную группу от вещества-субстрата. Пример: аденилатциклаза. Способности каждого энзима определяются индивидуальным, только ему свойственным строением. Любой фермент — это, прежде всего, белок, и его структура и степень сворачивания играют решающую роль в определении его функции. Для каждого биокатализатора характерно наличие активного центра, который, в свою очередь, делится на несколько самостоятельных функциональных областей:.

В зависимости от конформации белковой молекулы каталитический центр может принимать разнообразную форму, которая должна соответствовать субстрату так же, как замок ключу. Такая сложная структура объясняет то, что ферментативный белок находится в третичном или четвертичном состоянии.

Здесь в первую очередь происходит связь между молекулой фермента и молекулой-субстратом. Однако связи, которые образует адсорбционный центр, очень слабые, а значит, каталитическая реакция на этом этапе обратима. Их функция — регулирование работы энзима.

Регулирование происходит с помощью молекул-ингибиторов и молекул-активаторов. Активаторные белки, связываясь с молекулой фермента, ускоряют его работу. Ингибиторы же, напротив, затормаживают каталитическую активность, причем это может происходить двумя способами: либо молекула связывается с аллостерическим центром в области активного центра фермента конкурентное ингибирование , либо она присоединяется к другой области белка неконкурентное ингибирование.

Конкурентное ингибирование считается более действенным. Ведь при этом закрывается место для связывания субстрата с ферментом, причем этот процесс возможен только в случае практически полного совпадения формы молекулы ингибитора и активного центра. Энзим зачастую состоит не только из аминокислот, но и из других органических и неорганических веществ. Соответственно, выделяют апофермент — белковую часть, кофермент — органическую часть, и кофактор — неорганическую часть.

Кофермент может быть представлен улгеводами, жирами, нуклеиновыми кислотами, витаминами. В свою очередь, кофактор — это чаще всего вспомогательные ионы металлов. Активность ферментов определяется его строением: дополнительные вещества, входящие в состав, меняют каталитические свойства.

Разнообразные виды ферментов — это результат комбинирования всех перечисленных факторов образования комплекса. Энзимы как биологически активные вещества не всегда необходимы организму. Биохимия ферментов такова, что они могут в случае чрезмерного катализа навредить живой клетке. Для предотвращения пагубного влияния энзимов на организм необходимо каким-то образом регулировать их работу. Процесс денатурации обратим, однако он может существенно повлиять на работу веществ.

Наибольшая активность ферментов, как правило, наблюдается при нейтральных значениях pH 7,,2. Также есть энзимы, которые работают только в кислой среде или только в щелочной. Так, в клеточных лизосомах поддерживается низкий pH, при котором активность гидролитических ферментов максимальна.

В случае их случайного попадания в цитоплазму, где среда уже ближе к нейтральной, их активность снизится. Стоит упомянуть о значении кофермента и кофактора в составе ферментов. Наличие витаминов или ионов металла существенно влияет на функционирование некоторых специфических энзимов. Все ферменты организма принято называть в зависимости от их принадлежности к какому-либо из классов, а также по субстрату, с которым они вступают в реакцию.

Иногда по систематической номенклатуре используют в названии не один, а два субстрата. Сохранились и тривиальные названия, которые не придерживаются правил номенклатуры. Примерами являются пищеварительные ферменты: трипсин, химотрипсин, пепсин.

Давно выяснено, что все ферменты являются белками и обладают всеми свойствами белков. Поэтому, подобно белкам, ферменты делятся на простые и сложные. Простые ферменты состоят только из аминокислот — например, пепсин , трипсин , лизоцим. Сложные ферменты холоферменты имеют в своем составе белковую часть, состоящую из аминокислот — апофермент , и небелковую часть — кофактор.

Для осуществления катализа необходим полноценный комплекс апобелка и кофактора, по отдельности катализ они осуществить не могут. Кофактор входит в состав активного центра, участвует в связывании субстрата или в его превращении. Как многие белки, ферменты могут быть мономерами , то есть состоять из одной субъединицы, и полимерами , состоящими из нескольких субъединиц. Активный центр — комбинация аминокислотных остатков обычно , обеспечивающая непосредственное связывание с молекулой субстрата и осуществляющая катализ.

Аминокислотные радикалы в активном центре могут находиться в любом сочетании, при этом рядом располагаются аминокислоты, значительно удаленные друг от друга в линейной цепи. В активном центре выделяют два участка:. У ферментов, имеющих в своем составе несколько мономеров, может быть несколько активных центров по числу субъединиц.

Также две и более субъединицы могут формировать один активный центр. Аллостерический центр allos — чужой — центр регуляции активности фермента, который пространственно отделен от активного центра и имеется не у всех ферментов. Связывание с аллостерическим центром какой-либо молекулы, называемой активатором или ингибитором или эффектором, модулятором, регулятором , вызывает изменение конфигурации белка-фермента и, как следствие, скорости ферментативной реакции. В качестве такого регулятора может выступать продукт данной или одной из последующих реакций, субстрат реакции или иное вещество см » Регуляция активности ферментов «.

Изоферменты — это молекулярные формы одного и того же фермента, возникшие в результате небольших генетических различий в первичной структуре фермента, но катализирующие одну и ту же реакцию.

Как правило, изоферменты имеют четвертичную структуру, то есть состоят из двух или более субъединиц. Например, димерный фермент креатинкиназа КК представлен тремя изоферментными формами, составленными из двух типов субъединиц: M англ. Креатинкиназа-1 КК-1 состоит из субъединиц типа B и локализуется в головном мозге, креатинкиназа-2 КК-2 — по одной М- и В-субъединице, активна в миокарде, креатинкиназа-3 КК-3 содержит две М-субъединицы, специфична для скелетной мышцы.

Определение активности разных изоферментов КК в сыворотке крови имеет клинико-диагностическое значение. Отличия между ними заключаются в разном соотношении субъединиц Н англ. Лактатдегидрогеназы типов 1 Н 4 и 2 H 3 M 1 присутствуют в тканях с аэробным обменом миокард, мозг, корковый слой почек , обладают высоким сродством к молочной кислоте лактату и превращают его в пируват.

Изоферменты ЛДГ-4 H 1 M 3 и ЛДГ-5 М 4 находятся в тканях, склонных к анаэробному обмену печень, скелетные мышцы, кожа, мозговой слой почек , обладают низким сродством к лактату и катализируют превращение пирувата в лактат. В тканях с промежуточным типом обмена селезенка, поджелудочная железа, надпочечники, лимфатические узлы преобладает ЛДГ-3 H 2 M 2. Определение активности разных изоферментов ЛДГ в сыворотке крови имеет клинико-диагностическое значение.

Еще одним примером изоферментов является группа гексокиназ , которые присоединяют фосфатную группу к моносахаридам гексозам и вовлекают их в реакции клеточного метаболизма. Из четырех изоферментов выделяется гексокиназа IV глюкокиназа , которая отличается от остальных изоферментов высокой специфичностью к глюкозе, низким сродством к ней и нечувствительностью к ингибированию продуктом реакции. В мультиферментном комплексе несколько ферментов прочно связаны между собой в единый комплекс и осуществляют ряд последовательных реакций, в которых продукт реакции непосредственно передается на следующий фермент и является только его субстратом.

В результате промежуточные метаболиты избегают контакта с окружающей средой, снижается время их перехода к следующему активному центру и значительно ускоряется скорость реакции.

Абзимами называются антитела , имеющие каталитическую функцию англ. Такая способность возникает в результате формирования промежуточного продукта при связывании антитела с антигеном имитация переходного комплекса E-X ферментативной реакции.

Ферменты имеют белковую природу Давно выяснено, что все ферменты являются белками и обладают всеми свойствами белков. Изоферменты креатинкиназы. Изоферменты лактатдегидрогеназы.

В нормальных физиологических условиях биохимические реакции в организме протекают с высокими скоростями, что обеспечивается биологическими катализаторами белковой природы — ферментами.

Их изучением занимается наука энзимология — наука об энзимах ферментах , специфических белках — катализаторах, синтезируемых любой живой клеткой и активирующих различные биохимические реакции, протекающие в организме.

Некоторые клетки могут содержать до различных ферментов. Ферменты — это белки с высокой молекулярной массой. Как всякие белки, ферменты имеют первичный, вторичный, третичный и четвертичный уровни организации молекул.

Первичная структура представляет собой последовательное соединение аминокислот и обусловлена наследственными особенностями организма, именно она в значительной степени характеризует индивидуальные свойства ферментов. Вторичная структура ферментов организованна в виде альфа — спирали.

Третичная структура имеет вид глобулы и участвует в формировании активного и других центров. Многие ферменты имеют четвертичную структуру и представляют собой объединение нескольких субъединиц, каждая из которых характеризуется тремя уровнями организации молекул различающихся друг от друга, как в качественном, так и в количественном соотношении.

Если ферменты представлены простыми белками, т. К простым ферментам относят пепсин, амилазу, липазу практически все ферменты ЖКТ.

Сложные ферменты состоят из белковой и небелковой частей. Белковая часть фермента называется — апоферментом, небелковая — коферментом. Кофермент с апоферментом образуют холофермент. Кофермент может соединятся с белковой частью или только на время реакции, или связываться друг с другом постоянной прочной связью тогда небелковая часть называется — простетической группой. В любом случае небелковые компоненты принимают непосредственное участие в химических реакциях путем взаимодействия с субстратом.

Коферменты могут быть представлены:. Активными формами витаминов В 1 входит в состав фермента — декарбоксилазу, В 2 — входит в дегидрогеназу, В 6 — входит в трансферазы. Апофермент, в свою очередь усиливает каталитическую активность небелковой части и определяет специфичность действия ферментов. Активный центр — зона молекулы фермента, которая специфически взаимодействует с субстратом. Активный центр представлен функциональными группами нескольких остатков аминокислот, именно в нем происходит присоединение и химическое превращение субстрата.

Аллостерический центр или регуляторный — это зона фермента ответственная за присоединение активаторов и ингибиторов. Данный центр участвует в регуляции активности фермента. Файловый архив студентов. Логин: Пароль: Забыли пароль? Email: Логин: Пароль: Принимаю пользовательское соглашение. FAQ Обратная связь Вопросы и предложения. Добавил: Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам. Скачиваний: Общая характеристика ферментов. Строение ферментов. Механизм ферментативного катализа.

Свойства ферментов. Номенклатура ферментов. Классификация ферментов. Кинетика ферментативных реакций. Клинико-диагностическое значение определения некоторых ферментов. Лекция Ферменты: строение, свойства, функции.

План лекции: 1. Единицы измерения ферментативной активности 1. Коферменты могут быть представлены: Нуклеозидтрифосфатами. Минеральными веществами цинк, медь, магний. Основные функции коферментов : Участие в акте катализа. Осуществление контакта между ферментом и субстратом. Стабилизация апофермента. В каждом ферменте выделяют несколько функциональных центров.

Эти центры находятся на разных участках молекулы фермента. Соседние файлы в предмете Биохимия

ВИДЕО ПО ТЕМЕ: 34 Ферменты и их роль в организме человека

https://www.youtube.com/embed/kMZbwQcK8Ko
Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Ферменты строение и функции
Лекарство от гепатита с из индии софосбувир